Главная / Электродинамика / Граничные условия для векторов электрического и магнитного поля на границе раздела двух сред

Граничные условия для векторов электрического и магнитного поля на границе раздела двух сред

А) Граничные условия для вектора электрической индукции.

Рассмотрим границу раздела двух сред с различными диэлектрическими проницаемостями и . Выделим на границе элементарный цилиндр, как показано на рис. 3.1.1.

Рис.1.4.1.Элементарный цилиндр, выделенный на границе раздела двух сред для определения граничных условий на вектор электрической индукции. и — нормали к поверхности S.

Согласно теореме Гаусса-Остроградского поток вектора электрической индукции через замкнутую поверхность S равен алгебраической сумме зарядов внутри объема V, ограниченного этой поверхностью:

(3.1.1)

Устремим высоту цилиндра к нулю . Тогда (3.1.1) преобразуется так:

(3.1.2)

Где , – компоненты вектора индукции, перпендикулярные границе раздела, S — площадь основания цилиндра.

Введем поверхностную плотность заряда:

(3.1.3)

Размерность поверхностной плотности заряда = Кл/м2 (Кулон на квадратный метр).

Тогда (3.1.2) можно переписать в виде

(3.1.4)

Если плотность поверхностного заряда равна нулю (), то

. (3.1.5)

Мы можем сформулировать следующее важное утверждение:

На границе раздела, не содержащей поверхностных зарядов, нормальная составляющая вектора электрической индукции непрерывна.

Б) Граничные условия для вектора магнитной индукции.

Рассмотрим границу раздела двух сред, обладающих различной магнитной проницаемостью. Из тех же соображений, что и в предыдущем пункте и принимая во внимание, что магнитных зарядов не существует, можно записать

(3.1.6)

Это равенство равносильно следующему утверждению:

На границе раздела двух сред нормальная составляющая вектора магнитной индукции всегда непрерывна.

В) Граничные условия для вектора напряженности электрического поля .

Рассмотрим снова границу раздела двух сред с различными диэлектрическими проницаемостями и . Выделим на границе замкнутый контур в соответствии с рис. 3.1.2. и используем закон электромагнитной индукции:

Где L — выбранный контур, L = 2 (1 + ) , S — площадь поверхности, ограниченная контуром L.

Рис.3.1.2. Контур на границе раздела двух сред, используемый при определении граничных условий для векторов напряженности электрического поля.

Устремим ширину контура к нулю, тогда поток вектора через поверхность S обратится в ноль, и мы получим

(3.1.7)

Или

Откуда следует, что

(3.1.8)

Это равенство равносильно следующему утверждению:

На границе раздела двух сред касательная составляющая вектора напряженности электрического поля всегда непрерывна.

Г) Граничные условия для вектора напряженности магнитного поля Н.

Как в предыдущем случае выделим на границе раздела двух сред замкнутый контур L (рис.1.4.2). Воспользуемся законом полного тока

(3.1.9)

Где — плотность тока, протекающего через поверхность S, ограниченную контуром L.

Учтем, что вдоль границы раздела может течь ток проводимости, тогда при стремлении следует ввести поверхностную плотность тока:

(3.1.10)

Размерность поверхностной плотности тока [] = А/м. Теперь (3.1.9) можно переписать так:

Откуда следует, что

(3.1.11)

Это равенство равносильно следующему утверждению:

На границе раздела двух сред разность касательных составляющих напряженности магнитного поля равна поверхностной плотности тока.

При отсутствии поверхностного тока

(3.1.12)

Это равенство равносильно следующему утверждению:

На границе раздела двух сред, по которой не течет поверхностный ток, касательная составляющая магнитного поля непрерывна.

Д) Граничные условия на поверхности идеального проводника.

Определим идеальный проводник, как проводник, внутрь которого не может проникать электромагнитное поле . Для полей СВЧ-диапазона хорошие проводники (серебро, медь) можно в первом приближении рассматривать как идеальные. На поверхности такого проводника, тем не менее, может течь ток проводимости и формироваться поверхностный заряд. Поэтому на поверхности идеального проводника

, ,

(3.1.13)

, .

Силовые линии электрического поля перпендикулярны к поверхности идеального проводника; силовые линии магнитного поля касательны к поверхности идеального проводника, как показано на рис.3.1.3.

Рис.3.1.3. Силовые линии электрического и магнитного полей вблизи поверхности идеального проводника.

Оставить комментарий